數位影像銳利度線性 判別模式之初探

許維欽

摘要

影像複製品質一直以來都是從事影像處理相關領域所關注研究的重點,最終的目標是 要達到最佳的影像複製品質。而影響影像複製品質因素最重要的三個依序分別為色彩、階調 以及銳利度,過去研究均僅針對色彩與階調之控制來達成最佳化的影像複製品質。

故本研究旨在針對探討銳利度對於影像複製品質的影響,並運用人眼視覺判別來提供最適化的銳利度控制之參考依據。本研究以實驗研究法來進行實驗,以特定類型的灰階影像內容為例,藉由改變影像銳利程度設定來討論影像複製品質的影響性。

本研究利用 Thurstone 配對比較法進行主觀評比,再與客觀評估的影像品質指標函數進行統計分析。實驗結果得知,其中六種客觀評估的影像品質指標函數所計算出來的值與主觀評比 Z-score 明顯的呈現一個「倒 U」的曲線關係,即所謂「最適化的銳利度調整曲線」。本研究再以區別分析法(Discriminant Analysis)建立線性預測判別模型,將此一非線性曲線轉換為線性度量區間,此一線性判別模型對於影像複製過程中銳利度調整提供一個有效率又精確的方法,本研究線性判別模型之建立,可視為影像銳利度自動化調整之雛形。

關鍵字:影像品質、影像銳利度、配對比較法、區別分析

壹、前言

一、研究動機

影響影像品質的關鍵因素眾多,要全 面性的一次探討所有可能的影響影像品質 的屬性因素是不可能的,通常人都有這樣 的經驗,在觀看螢幕上的影像時,解析度 愈高的螢幕所產生的影像會愈清晰, 在經 驗之中,觀測者通常會認爲清晰影像的品 質會比模糊影像的品質來的好,而且也很 輕易地察覺出影像之間的品質差異,這樣 的清晰影像稱爲影像銳利度較佳的影像。 依據杜信宏(1999)的研究中認爲,在眾 多影響影像品質的因素中,影像清晰度以 及色調對比度是較重要的關鍵屬性。另 外,M.D.Fairchild(2003)等人的研究也指 出影像品質中,感知影像對比 (Perceived Image Contrast) 是相當重要的因素,而通 常會形成感知影像對比的情況,在 Fairchild 的文章中認爲有三種情況: 亮度對比 (Lightness Contrast)、彩度對比 (Chroma V)、銳利度(Sharpness)。當中的彩度對 比通常會被獨立出來跟色彩一致性做比 較,而銳利度與亮度對比有較直接的關 係。因此綜合這些研究的結果,本研究認 爲人的主觀感受會依據影像內容不同而改 變,影像銳利度與人對影像內容的主觀感 受應有相當大的關係,因爲影像銳利度通 常指的是影像中的物體能夠被看得清楚的

程度(杜信宏,1999)。因此,本研究的目的 著 重 在 探 討 影 像 銳 利 度(Image Sharpness)和影像品質的關聯性。

二、研究目的

本研究主要目的以探討「影像銳利度」 與「影像品質」之間的相關性。除了能直 接提供一般針對影像銳利化演算法相關研 究有用的資訊外,對於影像品質評估模式 的研發,亦有相當的幫助。因此本研究的 主要目的是:

一、探討「影像銳利度」與「影像品質」 之間的相關性。

數位影像一旦被擷取就有解析度上的 先天限制,影像解析度在光學成像後就先 決定了,在影像銳利度的量測無法以儀器 直接做測量定義,因此就必須針對影像處 理過後的影像,利用統計原理對影像做一 些計算或依據所定義的影像品質指標函 數,然後再與影像品質視覺感受測量的結 果作比對分析。

二、探討客觀評估的影像品質指標函數對 於影像銳利度之適用性。

一般客觀的評估方式大多以計算影像的變異量爲主,例如,MSE、SNR、PSNR等等,這些的計算可以說是一種線性的計算模式,而我們人類感知程度是非線性的,因此這些用來評估的影像品質指標函數,能不能符合人類的感知標準尚須討論。

三、研究範圍與限制

一般數位影像分爲靜態影像與動態影像兩類,本研究主要探討的對象爲數位靜態影像,在電子出版或印刷複製的過程中,數位影像的最終呈現點有兩個部分,一個是以螢幕爲主,另一個是印刷複製品爲主。由於影像工作者(攝影師、影像設計師、印前人員等)通常都以螢幕上所呈現的影像作調整處理,再加上顯示器快速發展,未來影像在螢幕呈現的比例也會提高,故本研究主要是以螢幕上呈現的影像,來作爲視覺主觀評估之影像。此外,影像銳利度是屬於影像品質影響因素之一,爲了簡化研究的問題,故需針對本研究的測試影像、螢幕及受測者做限制,限制條件如下:

一、測試影像選用灰階 影像,由於彩色影像會涉及 到色彩喜好以及色彩意象等 等影響心理感受,這部分本 實驗先不作探討,另外,影 像的計算通常以影像的亮度 值做運算,故選用灰階影像。

二、由於本研究主要以 螢幕呈現來作爲影像評比的 方式,故選用一經過校正好 的 CRT 螢幕作爲測試平台, 不同螢幕之間是否會對於受 測者在影像銳利度評比有影 響,則不是本研究討論的範圍,故本研究 不探討螢幕的不同差異,本研究螢幕解析 度設定値則固定爲1024×768 dpi。

三、本研究的受測者以簡單隨機抽樣,抽取文化大學新聞傳播學院學生共 169 位。

四、研究架構

本研究有兩個階段,第一階段主要是 利用配對比較實驗來求取主觀視覺評比的 銳利度偏好程度,第二階段再以客觀評估 的影像品質指標函數爲建立預測區別模 型,根據區別分析法與配對比較實驗的影 像所建立的區別模式,驗證其預測效果是 否與主觀評估效果符合。

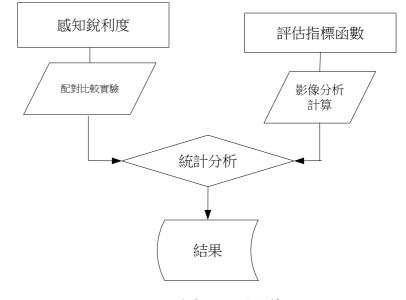
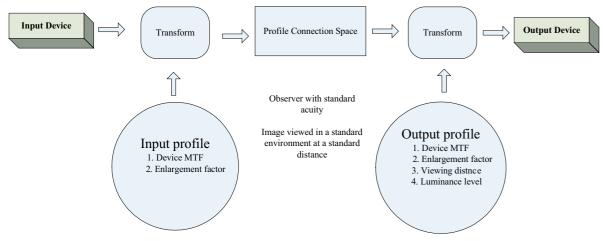


圖 1-1、本實驗之研究架構


貳、文獻探討

一、影像品質的意義

影像品質有兩個概念會被提到,就是「喜好 Preference」與「匹配 Matching」,這兩種概念是有差異的(Lester,1994)。這兩種概念常常被延伸探討,影像銳利度是指影像中物體能夠被看得清楚清晰的程度(杜信宏,1999)。既然影像銳利度(杜信宏,1999)。既然影像銳利度的其中一個因素,自然地在以往的文獻中,影像銳利度的相關研究也朝這兩種概念作延伸。從「匹配」的概念來看,既然影像品質的目的是以影像複製前後要達匹配的一致性,就必須以一套所謂的管理系統來對每個會影響影像品質的因素做控制,如同 Lindsay MacDonald 認爲影像銳利度(Sharpness)在跨媒體複製中也需要被重視,並提出以色

彩管理爲架構的影像銳利度管理模式,以 達到複製影像品質的匹配一致性目的。如 同 Lindsay MacDonald(1999)將影像品質 分爲三個主要方面色彩(color)、階調 (Tone)、銳利度(Sharpness),其中他認 爲影像銳利度(Image Sharpness)在跨媒體 複製中也需要被重視。

而另一個「喜好」的概念,在影像銳利度上被稱為感知銳利度(Perceived Sharpness),依據 Fairchild(2003)的文章中所提及感知影像對比(Perceived Image Contrast)的形成認為有三種情況:亮度對比(Lightness Contrast)、彩度對比(Chroma Contrast)、銳利度(Sharpness)。所以銳利度應該是附屬在感知的影像對比中來討論的,而根據 Evans(1959)對於「感知影像對比」所做的定義來看,定義如下:

感知影像對比的感知比例 = 複製影像 理想的影像

所謂的理想影像(ideal image)指的是對於影像品質而言,每個人的心中都有一個自行定義的內在理想影像(internal ideal image),因此通常在探討感知影像對比多以視覺理論做爲切入點。而爲了與感知影像對比做區別,也必須對於「影像對比」做定義,根據 Fairchild(1995)所做的定義如下:

從這兩個定義上來看,就非常容易理 解感知影像對比與影像對比之間的差異。

二、感知銳利度(perceived sharpness)

影像銳利度(Sharpness)指的是影像 中的物體能夠被看得清楚的程度,影像的 銳利度會影響影像品質的好壞,主要與影 像的解析度以及人眼的空間解析能力和人類心理感知有關(杜信宏,1999)。影像品質是觀測者(Observer)接受影像物理屬性的刺激之後,對影像喜好程度所做的主觀判斷結果,通常是觀看者對影像喜好程度的一種評量,影像本身有不同的物理屬性,當人眼接受到這些物理屬性的刺激之後,在觀看者的知覺當中會產生對應於這些物理屬性的心理感覺強度(杜信宏,1999)。

由於光學或電子組件有其處理能力上的極限,在經光學系統擷取後的影像,往往並不能百分之百重建原來的影像,因此透過影像銳利化增強處理,通常是在加強邊界增加影像對比銳利。雖然它不增加實際資訊容量,但是改善對比增加眼睛看的感覺,這會提升影像的感知銳利度(perceived sharpness)和細節(detail)。但是如果銳利處理做得過分的話:可能導致

圖 2-2、月暈效應 (資料來源:本研究)

三、客觀評估函數

本研究以已往常用的影像品質指標函 數 RMSE、PSNR、SNR、Entropy、 SharpnessRatio、Contrast、低頻功率百分 比、FrequencySharpness 等等, 做為本研究 對於影像品質的評估函數,這些客觀評估 函數計算說明如下。

(一) 影像對比 (Contrast)

將影像灰階值視爲單純的離散訊號 值,而不管灰階值之空間分佈位置,以統 計的方法計算出有關影像整體灰階值的一 些指標值,一張影像的灰階平均值($\frac{-}{f}$) 和變方 (σ) 可由下式計算而得:

$$\overline{f} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)$$

$$\sigma = \frac{1}{MN} \sum_{n=1}^{M} \sum_{n=1}^{N} [f(x, y) - \overline{f}]^{2}$$

一般灰階平均值主要僅可以反映出整 體影像的亮度,除了可以檢視影像是否過 度曝光 (over exposure) 或曝光不足 (under exposure)以外,對評估影像的空間品質而 言並無太大價値。而變方 (σ) 則是影像 對比的一個重要量測值,如果變方(σ) 小則表示對比低,相對的影像中包含的資 訊含量也比較低。若雜訊不大,一般而言 對比比較強的影像看起來也比較清晰,因 此變方對評估影像的空間品質而言,具有 一定程度的意義。

(二) 熵 (Entropy)

資訊理論 (information theory) 中用於 評估資訊內涵複雜度之衡量指標熵 (Entropy), 熵是對一群隨機變數分佈的描 述,應用於數位影像上,則表示灰值的不 確定程度或是平均亂度,用以分析影像之 同質性,以下式表示:

$$Entropy = -\sum_{i=0}^{255} P(i) \log_2 P(i)$$

以8位元灰階影像爲例,p(i)爲影像 中 0~255 個灰階中每個灰階 i 出現的機率, Ħ.

$$\sum_{i=0}^{255} P(i) = 1$$

滿足當 $P(i) = 1/256 = 2^{-8}, i = 0,...255$ 時,即每個灰階出現的機率相等時,則熵 等於8,此時熵爲最大値;當P(i)=1. $P(j \neq i) = 0, j = 0,...,255$ 時,即影像中只 有出現一種灰值,爲一均調影像,則熵等 於 0,此時熵爲最小值(Wolfgang, 1991)。

(三)均方根誤差 (root-mean-square error,

RMSE)

在影像壓縮或影像復原的研究領域 裡,經常會用一些定量的數學量測方式, 來判斷因執行影像處理後所產生的影像品 質的好壞,而最常用到的定量數學量測方 法有 MSE、RMSE 兩種, RMSE 是 MSE 的 均方根,RMSE的計算式如下:

$$RMSE = \sqrt{\frac{1}{NM} \sum_{x=1}^{M} \sum_{y=1}^{N} [f(x, y) - \hat{f}(x, y)]^{2}}$$
$$= \sigma_{e}$$

其中f(x, y)表示原始影像之灰階值, f(x,y)表示影像銳化過濾後影像之灰階值。

(四) 訊號峰雜訊比 (peak signal-tonoise ratio, PSNR)

在重建訊號之品質估算方面,評估還 原後的影像品質,一般研究中通常採用 PSNR 來評估還原後的影像品質。

$$PSNR(db) = 10 \cdot \log_{10} \left[\frac{f_{\text{max}}^2}{\sigma_e^2} \right]$$

其中 f_{max}^2 表示影像灰階值之最大值,通 常直接以255代入。

(五) 訊號雜訊比 (signal-to-noise ratio, SNR):

SNR 的數值越大表示影像品質的效果

$$\sigma_f^2 = \frac{1}{NM} \sum_{v=1}^{M} \sum_{v=1}^{N} [f(x, y) - \hat{f}(x, y)]^2$$

f(x,y)表示原始影像之灰階平均值

(六) Sharpness Ratio (SR)

根據藍寅俊(1997),以假設邊界爲基 礎的適應性數位放大技術的研究中,針對 影像邊界的梯度計算,該研究所用來評估 影像品質的計算方法如下:

Sharpenss =
$$\sum_{x=1}^{H-1} \sum_{y=1}^{W-1} f^{2}(x, y)$$

 $f(x, y) = I(x, y) - I(x - 1, y) + I(x, y)$
 $-I(x, y - 1)$

其中W和H為影像的寬度及高度, f(x,y) 爲 (x,y) 位置像素的梯度値。

(七) 低頻之功率百分比 (Low Frequency Percentage , LFP)

一般而言,影像中的邊緣越尖銳、數 量越多,則高頻能量越多,但因數位影像 不可能為有限頻寬,因此經過傅立葉轉換 後一定會有重疊失真的情形。亦即高頻部 分不真實,但低頻部分訊號仍有意義,故 可分析低頻能量與總能量之比例關係,看 看比值與影像之空間品質間之關係爲何。 因此我們利用低通濾波器的概念,濾除高 頻訊號的能量,分析低頻能量佔總能量的 比例是否亦能提供我們對影像品質評估的 線索。作法如下,建立一組標準軌跡計算 出包圍不同整體訊號功率 P_T 的圓,將由低 頻開始累積之頻率截止半徑 u, v=0,1, $2 \cdots n-1$ 的每一點的功率加起來得到 P_T

8

$P_T = \sum_{n=1}^{n-1} \sum_{n=1}^{n-1} P(u, v)$

其中P(u,v)由式給出,如果轉換已經 中心化,則越靠近中心原點的部分代表越 低頻的部分。因此以原點爲中心、半徑爲n 的圓包含著功率低於 n 頻率,而其所佔的 功率百分之比 β 則為

$$\beta = 100 \left[\sum_{u=0}^{n-1} \sum_{v=0}^{n-1} P(u,v) / P_T \right]$$

本研究在擷取低頻之功率百分比 (LFP) 部分,主要根據人類視覺對於空間 頻率的敏感度做為依據, 擷取範圍為 5~70 cpd °

(八) 頻率銳利度分析 (Frequency Sharpness, FS)

根 據 Hiroaki Kotera and Wang Hui (2002)的文章中提及頻率銳利度分析 (Frequency Sharpness),來做爲評估他們的 銳利化演算法的效果評估,而頻率銳利度 分析的公式如下:

$$\mathcal{E} = \frac{\int (\left| F_{sharp}(\omega) \right| - \left| F_{org}(\omega) \right|) V(\omega) d\omega}{\int \left| F_{org}(\omega) \right| V(\omega) d\omega}$$

 $|F_{org}(\omega)|$ 是指原稿的傅立葉頻譜, $\left|F_{\mathit{sharp}}(\omega)
ight|$ 指的是作用完 Sharpening Filter 之 後影像的傅立葉頻譜。

參、研究方法

一、實驗設計

本研究影像銳利度是使用Adobe Photoshop 影像處理軟體中的 USM (Unsharp Masking)的設定,來改變影像的銳利程度 (Sharpness Level),由於所操弄得銳利程度 (Sharpness Level) 會直接影響主觀評估判 斷的結果,因此需要一有效的銳利程度 (Sharpness Level) 設定操弄,假如所操弄 得設定落在同一個感覺閾之內,那麼受測 者便不容易將這種影像作區分判斷。另一 方面,由於所操弄的銳利程度是以 Adobe

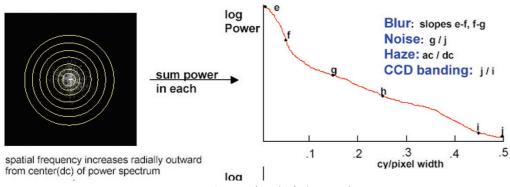


圖 2-3: 給出不同截止頻率半徑的結果

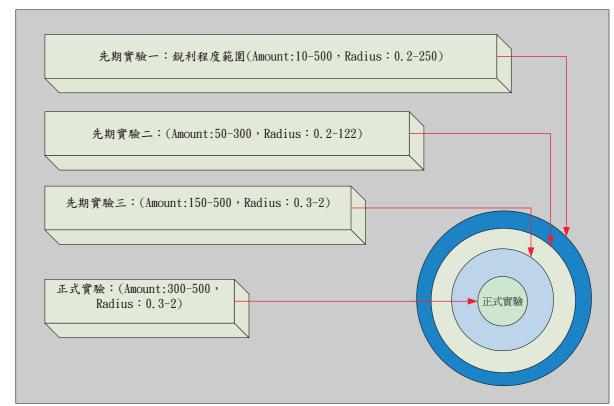


圖 3-1、銳利度設定示意圖 (本研究整理)

Photoshop USM 來設定,在 USM 的調整上 Adobe Photoshop USM 提供了三個參數可以 做銳利程度的設定:「Amount」、「Radius」 與「Thershold」。在這三個參數設定上會有 許多種銳利程度的組合出現,本研究依據 JND(just noticeable difference 恰可顯出差異) 感覺閾的理論,希望能在眾多銳利程度的 組合中,找出一段可供討論的有效銳利程 度(Sharpness Level)組合,因此本研究只 操 弄「Amount」、「Radius」 兩 項, Thershold 均設定爲零。

本研究主觀配對比較實驗共有兩階

段,第一階段爲先期實驗,本研究影像銳 利度是使用 Adobe Photoshop 影像處理軟體 中的 USM (Unsharp Masking) 的設定,來 改變影像的銳利程度(Sharpness Level), 先期實驗有三個,實驗的目的在於求取人 對不同影像銳利度感覺閾的主觀評估分數。

先期實驗一,主要目的是以較大範圍 的銳利程度(Sharpness Level)來求取人對 不同影像銳利度感覺閾的主觀評估分數。 而選定的測試影像爲 ISO/DIS 12640 標準影 像(SCID)之N1、N2。

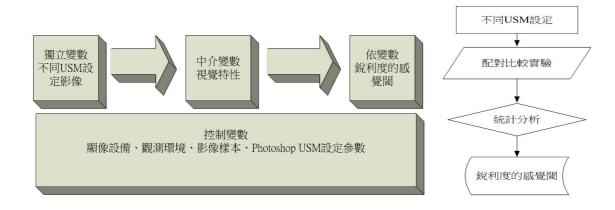


圖 3-2: 先期實驗的研究架構與研究流程

而正式實驗主要是利用先期實驗所得到的有效銳利程度(Sharpness Level)設定參數,再以本實驗自行掃描的測試影像作為操弄,同樣再以配對比較法求取主觀視覺評比分數,先期實驗有三組與正式實驗說明分述如下:

10

1. 實驗指導語:

您同時見到左右各一張圖,請你選擇 其中一張你感覺「影像清晰程度比較喜歡」 的圖。

2. 影像銳利度設定:

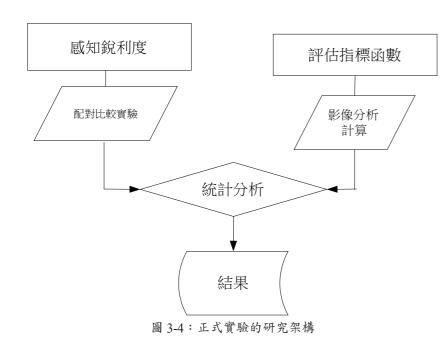


表 1: 先期一實驗影像銳利度設定

Amount	原稿	10	250	500
Radius	水响			
原稿	$A_{original}$			
0.2		$B_{0.2-10}$	$C_{0.2-250}$	$D_{0.2-500}$
122.5		$E_{122.5-10}$	$F_{122.5-250}$	$G_{122.5-500}$
250		H_{250-10}	$I_{250-250}$	$J_{250-500}$

表 2: 先期二實驗影像銳利度設定

<u> </u>				
Amount	原稿	E.O.	150	300
Radius	次 师	50		
原稿	$A_{original}$			
0.2		$B_{0.2-50}$	$C_{0.2-150}$	$D_{0.2-300}$
2		E_{2-50}	F_{2-150}	G_{2-300}
122.5		$H_{122.5-50}$	$I_{122.5-150}$	$J_{122.5-300}$

表 3: 先期三實驗影像銳利度設定

Amount	原稿	150	300	500
Radius		150	300	500
原稿	$A_{original}$			
0.3		$B_{0.3-150}$	$C_{0.3-300}$	$D_{ m 0.3-500}$
0.9		$E_{0.9-150}$	$F_{0.9-300}$	$G_{0.9-500}$
2		H_{2-150}	I_{2-300}	J_{2-500}

表 4:正式實驗影像銳利度設定

Amount	原稿	200	F00
Radius		300	500
原稿	$A_{original}$		
0.3			$B_{0.3-500}$
0.9		$C_{0.9-300}$	$D_{0.9-500}$
2		E_{2-300}	F_{2-500}

第三十三卷第四期

二、實驗設備與環境的控制

1. 螢幕校正與設定

本研究以 ProfileMaker 4.0 校正軟體與 EveOne 螢幕色度儀來校正本實驗之螢幕, 首先螢幕需暖機一小時以上,將螢幕色溫 設定在 $6500 K^0$, 亮度設在 $125\pm 10cd/m^2$ (TCO 99),反差由校正軟體做最佳化設 定。

螢幕校正後,必須讓螢幕亮度由暗到 亮的變化沒有反轉或平折的現象 (洪逸 昀,2003)。因爲若產生平折或是反轉現象 除了會讓影像在亮部或暗部的表現較差之 外,也將會影響到視覺主觀評估測量的結 果,造成較大的誤差,本研究螢幕校正後 之 gamma 曲線如下圖。另外,本研究中的 實驗在進行之前,螢幕都需先暖機一小時 以上,以確保螢幕亮度之穩定性。

2. 測試影像設定

12

本研究所採用的灰階測試影像有兩 種,第一種影像是 ISO 12640 標準測試影 像,由於 ISO 標準影像共有八類,本研究 只採用其中的 N1、N2 影像來做測試,選 取的依據主要是因爲 N1 是人像的標準影 像,人像也是一般常用來測定的典型影像 內容類型;而選取 N2 主要是因為 N2 標準 影像中含有許多邊界 (Edge) 部分,在影 像頻譜分析上而言,屬於高頻影像的類 型,故本研究選用 N2。第二種影像為本研 究自行掃描的測試影像,掃描的影像內容 包含人物、街道、房屋大門三類。故本實 驗的測試影像一共有五種,影像解析度均 固定設爲300dpi,實驗圖形的大小爲500 x 375 pixels 及 335 x 500 pixels,在螢幕上約 爲 8×6 inch 及 6×8 inch,背景設爲中灰 色(L值=50),在距離50~60 cm作測試 時,在視網膜所對應的視角大小約爲4°。 測試影像如下:

3. 實驗環境與觀測距離

實驗中並要求受測者在50~60公分的 觀看距離下進行銳利度效果的評比,實驗 中目標物與受測者的視角對應關係約為4 度視角,所有受測者在測試前都須經過

左圖 3-5: SCID N1、中圖 3-6: SCID N2、右圖 3-7: 人物

左圖 3-8:街道、右圖 3-9:房屋

圖 3-10:配對比較畫面 (資料來源:本研究)

5-10 分鐘的暗適應,以使視力回復至最佳 狀態後在暗室中進行測試,暗室的設計是 爲避免其它光線影響圖形的亮度,使測試 的結果有一標準的環境。

三、研究工具

1 主觀視覺評比函數

本實驗求取視覺主觀評比的研究工 具,依據實驗設備與環境的控制結果,實 際施行測試平台環境如下圖所示:

本實驗共具五種不同的影像, 先期實 驗有兩種影像,每組有 10 種不同 USM 銳 利效果供受測者進行交叉比對, 亦即受試 者必須自 90 種(C_2^{10})配對組合中進行感 知影像銳利度優劣的評比,每做完一種影 像休息三分鐘,繼續進行下一種影像的評 比,重複此動作直到配對影像全部作答完 畢爲止,每位受試者共有180次的嘗試次。

正式實驗中有三種影像,每組有6種不同 USM 銳利效果供受測者進行交叉比對,亦 即受試者必須自 15 種 (C_2^6) 配對組合中進 行感知影像銳利度優劣的評比,每位受試 者共有 45 次的嘗試次。

2 客觀影像評估函數

本研究依據文獻探討中所提及之評估 函數,選定影像對比(Contrast)、 Entropy RMSE PSNR SNR SharpnessRatio、低頻功率百分比(LFP)、 頻率銳利度 (FS) 來做爲客觀影像銳利度 評估函數分析之指標,這些評估函數本研 究以 Matlab 6.5 自行撰寫程式計算分析。

3. 實驗說明:

兩種不同影像各自施行配對比較實 驗,給予相同的指導語,要求受測者依據 指導語的指示做出判讀選擇,並記錄選取 結果。

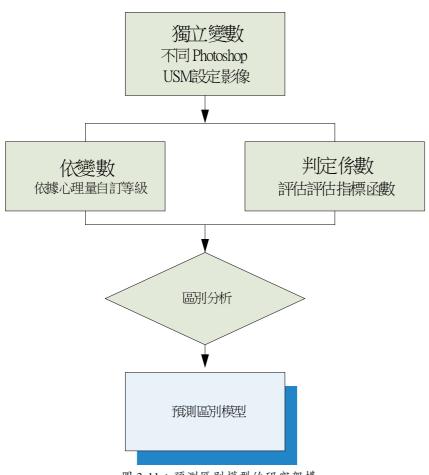


圖 3-11:預測區別模型的研究架構

肆、實驗結果與資料分析

一、主觀評比配對比較結果

14

在這邊本研究假設三組先期實驗,經過 Thurstone 的配對比較得出的三組 Z-score 是一線性關係,利用最小平方法(least-squares)將三組實驗的 Z-score 合併,而可以得到一個大範圍銳利程度(Sharpness Level)的 Z-score Scales,而 Scales 的合併轉換方程式如下:

$$S_2 = S_1 * b$$

$$b = (S_1^T S_1)^{-1} S_1^T S_2$$

$$\begin{bmatrix} S_2 \\ \cdot \\ \cdot \\ \cdot \\ S_2 \end{bmatrix} = \begin{bmatrix} 1 & S_1 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & S_1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

 S_1 表示要轉換的 Z-score, S_2 表示目標 Z-score,而 b 是轉換矩陣, $\begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$ 是 b 轉換矩 陣的係數。

合併轉換比較如下:

1 SCID N1

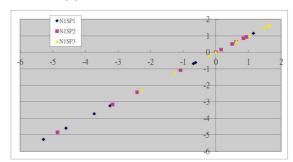


圖 4-1: 先期實驗 N1 合併後 Z-score

2 SCID N2

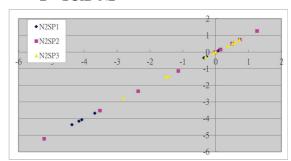


圖 4-2: 先期實驗 N2 合併後 Z-score

3、正式實驗

正式實驗中,本研究以自行掃描的三 種影像(人物、房屋、街道)最爲刺激材 料,在利用先期實驗對於銳利度的設定結 果在加以調整後所測量的主觀評比結果。

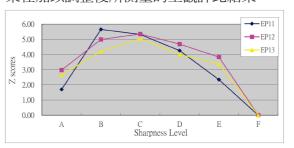


圖 4-3: 正式實驗之 Z-score

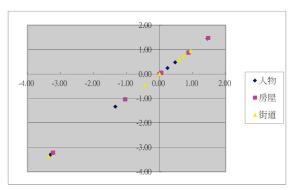


圖 4-4:3 種不同影像的 Z-score 合併

二、評估指標函數分析

本研究以非線性相關來對客觀評估指標函數與主觀評比 Z-score 做非線性相關分析,而本研究以一般常用的二次多項式非線性方程式來做估算,此非線性方程式如下:

$$Y = aX^2 + bX + c$$

並以 R^2 值做為可解釋變異量,一般 R^2 值表示自變數解釋依變數變異的比例,本研究以 $R^2 > 0.5$ 以上做為有良好相關性的判定。依據二次方程式的非線性相關分析之後,八種客觀評估指標函數與主觀評比 Z-score 的相關程度,可得知有六種客觀評估指標函數具有較良好的相關 ($R^2 > 0.5$),因此本研究在依照這六種客觀評估指標函數對影像進行討論,非線性相關的整理如下表:

表 5: 非線性回歸 R Square

	評估指標函數	Multiple R	R Square
1	Contrast	0.84363	0.71172
2	Entropy	0.82977	0.68851
3	RMSE	0.88383	0.78115
4	PSNR	0.83958	0.70489
5	SNR	0.82224	0.67607
6	SharpnessRatio	0.53951	0.29107
7	LFP	0.61757	0.38139
8	FrequencySharpness	0.83018	0.6892

因此從本研究結果可知,有六種客觀 評估指標函數具有較良好的相關(R^2 >0.5),整理如下:

- 1、均方根誤差 (root-mean-square error, RMSE)
 - 2、影像對比(Contrast)
- 3、訊號峰雜訊比(peak signal-to-noise ratio,PSNR)
 - 4 \ Frequency Sharpness (FS)
 - 5、熵(Entropy)
- 6、訊號雜訊比(signal-to-noise ratio, SNR)

三、線性判別模式

本研究利用統計之判別分析法來建立 影像銳利度較佳的判別函數,做爲區分影 像銳利程度的等級,本研究區別分析的步 驟:

- 1、選擇判定變數及分組變數
- 2、計算各組單變數統計量
- 3、推導判定係數
- 4、建立判別模型
- 5、進行新資料判別分組,驗證判別模型
- 6、輸入樣本,依照判別模型進行樣本判別

7、計算正確率

在選擇分組變數方面,主要依據實驗 影像(先期實驗的兩種影像內容,共60幅 影像),依照配對比較結果計算其合併 Z-score 値,再以原稿的 Z-score 分數做爲轉 置零點,轉置 Z-score 値爲原稿零點,之後 再以轉置 Z-score 値將影像區分爲三類分組 變數:

分組變數 1:影像銳利度較佳(影像 Z-score>原稿 Z-score)

分組變數 2:原稿(原稿自己) 分組變數 3:影像銳利度較差(影像

Z-score < 原稿 Z-score)

在分別以具有良好相關性的六項評估 指標函數的值做爲判定變數,進行區別分 析來建立判定係數及判別模型。在推導判定係數與建立判別模型方面,有兩種作法:第一,使用所有判定變數;第二,使用逐步回歸分析法。本研究同時採用兩種作法來推導判定係數與建立判別模型,故會產生四種判別模型,並以正式實驗的影像做

圖 4-5:影像排名最佳前三名

圖 4-6:影像排名最差前三名

爲驗證這四種判別模型的效果。判別模型 依照判別係數本研究所建立四種的 Fisher's 線性區別模型,表示每個影像透過判別模 型的區別函數計算之後,其得分最高的等 級便是此影像被歸類的等級,因此本研究 再以正式實驗的影像,先計算各個評估指 標函數的值,再透過所建立的區別函數計 算其得分數來做分類,最後再以視覺評估 加以驗證。

伍、結論

初始判別結果爲初始建立判別模型 時,對於使用的樣本自行所得的一個初始 判別結果,假設初始判別結果的效果(正 確率)很差的話,那此判別模型也不足採 用。依照判別分析所建立的 Fisher's 線性 區別函數,正式實驗的影像,先計算各個 評估指標函數的值,再透過所建立的區別 函數計算其得分數來做四種判別模型的初 始判別結果,結果發現判別模型一與判別 模型四的正確率分別為 N1、N2 中的最高 三個(模型一:86.7%,模型三:86.7%, 模型四:83.3%),故本研究再以這三種判 別模型對正式實驗影像(人物、房屋、街 道)做驗證。

最後驗證結果顯示,三種線性判別模 型對正式實驗影像(人物、房屋、街道) 的判別正確率依序爲:模型一:85.5%,模 型三:66.7%,模型四:87.7%,因此判別 模型四的效果較佳,正確率最高達87.7%。

在本研究中以頻率分析爲主的評估指 標函數, Frequency Sharpness 的 $R^2 = 0.6892$; 另一個低頻功率百分比(Low frequency Percentage) 的 R^2 =0.38139 的解釋變異程度 偏低,表示影像銳利度在頻率分析還需要 在做進一步的探討。

另外,在所建立的線性判別模型中, 線性預測模型四(以 RMSE、SNR 為判定 係數)的效果是最好的,當輸入驗證影像 來作區別預測分析時,正確率可達83.3% 。本研究所採用的影像內容種類並沒有很 多,在統計運算上也會產誤差,但是預測 效果的正確率仍有不錯的效果。

陸、參考資料

一、中文部分

- 1. 方世榮 (2000)。統計學。五南:台北市。
- 2. 王爲豪(2000)。天文攝影之數位影像處理-數位影像與數位影像處理的基本概念。台北 市立天文館期刊,2,p1-15。
- 3. 王敏男(1998)。影像雜訊消除與效果評 估。未出版之碩士論文,台灣科技大學電機 工程研究所究所,台北市。
- 4. 吳玲玲(1998)。認知心理學。華泰:台北 市。
- 5. 宋新岳(2000)。CCD光電系統之影像品

質。量測資訊,76,p34-56。

- 6. 李江山、孫慶文、陳一平、陳建中、黄淑 麗、黃榮村等人(2002)。視覺與認知-視 覺之決與視覺運動系統。遠流:台北市。
- 7. 李坤遠、陳玲慧(1999)。數位影像之資訊 隱藏技術探討。交通大學資訊科學系自動化 資訊處理實驗室研究報告。
- 8. 杜信宏(1999)。影像清晰度和彩度對比與 影像品質的關聯性。未出版之碩士論文,清 華大學工業工程與工程管理所,新竹市。
- 9. 孟繁昌(1995)。電腦視覺之影像清晰度認 知的研究。未出版之碩士論文,元智大學電 機與資訊工程研究所,桃園縣。
- 10. 林俊男(2001)。一種加強影像邊緣銳化的 影像放大方法。未出版之碩士論文,元智大 學資訊工程研究所,桃園縣。
- 11. 洪逸昀(2003)。CRT 螢幕色彩特性描述檔 模式應用於 LCD 螢幕適用性之研究。未出 版之碩士論文,中國文化大學資訊傳播研究 所,台北市。
- 12. 孫沛立(2004)。以混合的色度統計資訊 預測影像視覺差異。中華印刷科技年報, 2004 p377-385 °
- 13. 徐明景(2001)。數位攝影的技術-數位影 像製作技巧在攝影上的應用。田園城市文 化:台北市。
- 14. 莊樹諄(2000)。資訊隱藏與隱像術。計算 中心通訊,16(22),p235-242。

- 15. 陳順宇(2000)。多變量分析。華泰:台北 市。
- 16. 黄俊英(1991)。多變量分析第四版。中國 經濟企業研究所:台北市。
- 17. 劉英茂 (2000)。基本心理歷程。文笙:台 北市。
- 18. 鄭心惠(2002)。遙測影像空間品質之評 估。未出版之碩士論文,成功大學測量工程 學研究所,台南市。
- 19. 繆紹綱(1999)。數位影像處理一活用 Matlab。全華科技:台北市。
- 20. 繆紹綱(2003)。數位影像處理。台灣培生 教育:台北市。
- 21. 藍寅峻(1999)。以假設邊界爲基礎的適應 性數位影像放大技術。未出版之碩士論文, 臺灣大學資訊工程學研究所,台北市。

二、英文部分

- 1. Barten Peter G.J. (1999). Contrast Sensitivity of the Human Eve and Its Effects on Image Quality. SPIE.
- 2. Burns, P. D. (2000) . Slanted-Edge MTF for Digital Camera and Scanner Analysis. Proc. PICS, IS&T, p135-138.
- 3. Elena A. Fedorovskaya, Huib de Ridder, Frans J.J. Blommaert. (1997). Chroma Variations and Perceived Quality of Color Image of Natural Scenes. Color research and application, 22 (2), p96-110.

19

18

- Engeldrum, P. G. (2000) Psychometric Scaling: A toolkit for Imaging System Development. Imcotek Press: Winchester, Massachusetts.
- Evans, G. M. (1959) . Eye, Film and Camera in Color Photography. Wiley: New York.
- Fairchild, M. D. & Calabria A. J. (2003a).
 Perceived Image Contrast and Observer
 Preference I. The Effects of Lightness, Chroma and Sharpness Manipulations on Contrast
 Perception. Journal of imaging science and technology, 47 (6), p479-493.
- Fairchild, M. D. & Calabria A. J. (2003b).
 Perceived Image Contrast and Observer
 Preference II. Empirical Modeling of Perceived
 Image Contrast and Observer Preference Data.
 Journal of imaging science and technology, 47
 (6), p494-508.
- Fairchild, M.D. & Johnson, G. M. (2000).
 Sharpness Rules. IS&T/SID 10 Years of Color Imaging Conferences CIC 8 (p24-30).
- Gonzalez, R. C. and Woods, R. E. (1992)
 Digital Image Processing. Addison-Wesley.
- 10. Hiroaki Kotera & Wang Hui. (2000). Multi-Scale Image Sharpening with Background Noise Suppression. IS&T/SID 10 Years of Color Imaging Conferences CIC 10 (p196-201).
- 11. Hiroaki Kotera, Yoshinori Yamada & Kazuya

- Shimo. (2000). Sharpness Improvement Adaptive to Edge Strength of Color Image. IS&T/SID 10 Years of Color Imaging Conferences CIC 8 (p153-157).
- 12. Lester, A. A. (1994) . Color Reproduction of CRT Displayed Image as Projected Transparencies. College of Imaging Arts and Science Rochester Institute of Technology Rochester, New York.
- Leu, J. G. (2001) . Sharpness preserving image enlargement based on a ramp edge model. Pattern Recognition, 34, p1927–1938.
- 14. Leu, J. G. (2002). Edge sharpening through ramp with reduction. Image and Computer Vision, 18, p501–514.
- 15. MacDonald, L. & Bouzit, S. (2000). Color Difference Metrics and Image Sharpness.
 IS&T/SID Color Imaging Conferences CIC 8
 (p262-267)...
- MacDonald, L. (1999). Framework for Image Sharpness Management System. IS&T/SID Color Imaging Conferences CIC 7 (p75-79).
- Thurston, L. L. (1927). A Law of Comparative Judgment. Psychological Review, 34, p273-286.

作者簡介

許維欽(WeiChin Hsu),國立台灣科技 大學應用科技研究所博班生。